Lesson 6.5 Exercises, pages 521-526

A
3. Identify the indicated characteristic of each function.
a) amplitude of $y=5 \sin x$
The amplitude is 5 .
b) amplitude of $y=2 \cos x$
The amplitude is 2 .
c) period of $y=\sin 10 x$
d) period of $y=\tan 4 x$
The period is: $\frac{2 \pi}{10}=\frac{\pi}{5}$
The period is: $\frac{\pi}{4}$
e) phase shift of $y=\sin \left(x-\frac{\pi}{7}\right)$ f) phase shift of $y=\cos \left(x+\frac{\pi}{12}\right)$

The phase shift is: $\frac{\pi}{7} \quad$ The phase shift is: $-\frac{\pi}{12}$

B
4. For each function below, sketch the graph for $-\pi \leq x \leq \pi$, then identify each characteristic:
i) amplitude
ii) period
iii) zeros
iv) equations of any asymptotes
v) domain of the function
vi) range of the function
a) $y=\cos x$

i) The amplitude is 1 .
ii) The period is 2π.
iii) The zeros are $\pm \frac{\pi}{2}$.
iv) There are no asymptotes.
v) The domain is $x \in \mathbb{R}$.
vi) The range is $-1 \leq y \leq 1$.
b) $y=\sin x$

i) The amplitude is 1 .
ii) The period is 2π.
iii) The zeros are $0, \pm \pi$.
iv) There are no asymptotes.
v) The domain is $x \in \mathbb{R}$.
vi) The range is $-1 \leq y \leq 1$.
c) $y=\tan x$

i) There is no amplitude.
iii) The zeros are $0, \pm \pi$.
v) The domain is $x \neq \pm \frac{\pi}{2}$.
ii) The period is π.
iv) The asymptotes are $x= \pm \frac{\pi}{2}$.
vi) The range is $y \in \mathbb{R}$.
5. Does this graph represent a periodic function? Explain.

No, the graph does not represent a periodic function because the graph does not repeat in regular intervals.
6. Use technology.
a) i) Graph each function.

$$
y=2 \cos x \quad y=-3 \cos x \quad y=\frac{1}{3} \cos x
$$

ii) How does varying the value of a affect the graph of $y=a \cos x$?

When $a=1$, the graph is $y=\cos x$ with amplitude 1. As a varies, the amplitude varies. When $a>1$, the graph of $y=\cos x$ is stretched vertically by a factor of a and the amplitude increases; when $0<a<1$, the graph of $y=\cos x$ is compressed vertically by a factor of a and the amplitude decreases; when $a<0$, the graph is also reflected in the x-axis.
b) i) Graph each function.

$$
y=\sin 3 x \quad y=\sin (-4 x) \quad y=\sin \frac{3}{4} x
$$

ii) How does varying the value of b affect the graph of $y=\sin b x$?

When $b=1$, the graph is $y=\sin x$ and its period is 2π. As b varies, the period of the graph varies. When $b>1$, the graph of $y=\sin x$ is compressed horizontally by a factor of $\frac{1}{b}$ and the period decreases; when $0<b<1$, the graph of $y=\sin x$ is stretched horizontally by a factor of $\frac{1}{b}$ and the period increases; when $b<0$, the graph is also reflected in the y-axis.
c) i) Graph each function.
$y=\cos \left(x-\frac{\pi}{6}\right) \quad y=\cos \left(x-\frac{\pi}{4}\right) \quad y=\cos \left(x+\frac{\pi}{3}\right)$
ii) How does varying the value of c affect the graph of $y=\cos (x-c)$?

When $c=1$, the graph is $y=\cos x$ with phase shift 0 . As c varies, the phase shift varies. When $c>0$, the graph of $y=\cos x$ is translated c units right; when $c<0$, the graph is translated c units left.
d) i) Graph each function.
$y=\sin x+1 \quad y=\sin x-2 \quad y=\sin x+0.5$
ii) How does varying the value of d affect the graph of $y=\sin x+d$?

When $d=0$, the graph is $y=\sin x$. As d varies, the graph of $y=\sin x$ is translated vertically. When $d>0$, the graph is translated d units up; when $d<0$, the graph is translated d units down.
7. Sketch the graph of each function. Describe your strategy.
a) $y=\cos x+1$

I used the completed table of values for $y=\cos x$ from Lesson 6.4, translated each point 1 unit up, extended the pattern, then drew a smooth curve through the points.
b) $y=\sin 2 x$

I used the completed table of values for $y=\sin x$ from Lesson 6.4, halved each x-coordinate, extended the pattern, then drew a smooth curve through the points.
c) $y=\cos \left(x-\frac{\pi}{3}\right)$

I used the completed table of values for $y=\cos x$ from Lesson 6.4, translated each point $\frac{\pi}{3}$ units right, extended the pattern, then drew a smooth curve through the points.
d) $y=2 \sin x$

I used the completed table of values for $y=\sin x$ from Lesson 6.4, doubled each y-coordinate, extended the pattern, then drew a smooth curve through the points.
8. Use technology to graph $y=\sin \left(x+\frac{\pi}{2}\right)$ and $y=\cos x$.

Explain the result.
The graphs coincide. The graph of $y=\cos x$ is the image of the graph of $y=\sin x$ after a horizontal translation of $\frac{\pi}{2}$ units left; that is, for any angle x radians, $\cos x=\sin \left(x+\frac{\pi}{2}\right)$.
9. A student says that the amplitude of this sinusoidal function is 5 . Is the student correct? Explain.

No, the amplitude is one-half of the vertical distance between a maximum point and a minimum point, which is 2 .

C
10. Sketch the graph of each function. Identify its characteristics.
a) $y=\csc x$

Take the reciprocal of each x-value in the completed table for $y=\sin x$ in Lesson 6.4, plot the points, extend the pattern, then join the points with 2 smooth curves. There is no amplitude. The period is 2π. There are no zeros. The equations of the asymptotes are $x=k \pi, k \in \mathbb{Z}$. The domain is $x \neq k \pi, k \in \mathbb{Z}$. The range is $y \geq 1$ or $y \leq-1$.
b) $y=\cot x$

Take the reciprocal of each x-value in the completed table for $y=\tan x$ in Lesson 6.4, plot the points, extend the pattern, then join the points with 2 smooth curves. There is no amplitude. The period is π. The zeros are $(2 k+1) \frac{\pi}{2}, k \in \mathbb{Z}$. The equations of the asymptotes are $x=k \pi$, $k \in \mathbb{Z}$. The domain is $x \neq k \pi, k \in \mathbb{Z}$. The range is $y \in \mathbb{R}$.
11. Use technology. Graph the function $y=\sin x+\cos x$.

Is it periodic? Explain. Is it sinusoidal? Explain.
The function is periodic because its values repeat at regular intervals. The function is sinusoidal because its maximum and minimum values are equidistant from the centre line.

