REVIEW, pages 560-566

6.1

1. Determine the value of each trigonometric ratio. Use exact values where possible; otherwise write the value to the nearest thousandth.

a) tan (-45°)	b) cos 600°	c) sec (-210°)
= -1	$= \cos 240^{\circ}$ $= -\frac{1}{2}$	$= \frac{1}{\cos(-210^\circ)}$ $= \frac{1}{\cos 150^\circ}$ $= -\frac{2}{\sqrt{3}}$
d) sin 765° = sin 45° = $\frac{1}{\sqrt{2}}$	e) $\cot 21^{\circ}$ = $\frac{1}{\tan 21^{\circ}}$ = 2.605	f) csc 318° = $\frac{1}{\sin 318^{\circ}}$ $\doteq -1.494$

2. To the nearest degree, determine all possible values of θ for which $\cos \theta = 0.76$, when $-360^{\circ} \le \theta \le 360^{\circ}$.

Since $\cos \theta$ is positive, the terminal arm of angle θ lies in Quadrant 1 or 4. The reference angle is: $\cos^{-1}(0.76) \doteq 41^{\circ}$ For the domain $0^{\circ} \le \theta \le 360^{\circ}$: In Quadrant 1, $\theta \doteq 41^{\circ}$ In Quadrant 4, $\theta \doteq 360^{\circ} - 41^{\circ}$, or approximately 319° For the domain $-360^{\circ} \le \theta \le 0^{\circ}$: In Quadrant 1, $\theta \doteq -360^{\circ} + 41^{\circ}$, or approximately -319° In Quadrant 4, $\theta \doteq -41^{\circ}$

6.2

3. As a fraction of π , determine the length of the arc that subtends a central angle of 225° in a circle with radius 3 units.

Arc length: $\frac{225}{360}(2\pi)(3) = \frac{15}{4}\pi$

6.3

4. a) Convert each angle to degrees. Give the answer to the nearest degree where necessary.

b) Convert each angle to radians.

5. In a circle with radius 5 cm, an arc of length 6 cm subtends a central angle. What is the measure of this angle in radians, and to the nearest degree?

```
Angle measure is: \frac{\text{arc length}}{\text{radius}} = \frac{6}{5}
                                                      = 1.2
In degrees, 1.2 = 1.2 \left(\frac{180^{\circ}}{\pi}\right)
                             ≐ 69°
```


6. A race car is travelling around a circular track at an average speed of 120 km/h. The track has a diameter of 1 km. Visualize a line segment joining the race car to the centre of the track. Through what angle, in radians, will the segment have rotated in 10 s?

In 1 s, the car travels:
$$\frac{120}{60 \cdot 60}$$
 km $= \frac{1}{30}$ km
So, in 10 s, the car travels: $\frac{10}{30}$ km $= \frac{1}{3}$ km
Angle measure is: $\frac{\text{arc length}}{\text{radius}} = \frac{\frac{1}{3}}{\frac{1}{3}}$
 $= \frac{1}{3}$

In 10 s, the segment will have rotated through an angle of $\frac{1}{3}$ radian.

7. Determine the value of each trigonometric ratio. Use exact values where possible; otherwise write the value to the nearest thousandth.

a)
$$\sin \frac{\pi}{3}$$

 $= \frac{\sqrt{3}}{2}$
b) $\cos \frac{5\pi}{6}$
c) $\sec \left(-\frac{\pi}{2}\right)$
 $= -\frac{\sqrt{3}}{2}$
 $= -\frac{\sqrt{3}}{2}$
 $= \frac{1}{\cos \left(-\frac{\pi}{2}\right)}$,
which is undefined
d) $\tan \frac{15\pi}{4}$
e) $\csc 5$
f) $\cot (-22.8)$
 $= \tan \frac{3\pi}{4}$
 $= \frac{1}{\sin 5}$
 $= \frac{1}{\tan (-22.8)}$
 $= -1$
 $\Rightarrow -1.043$
 $\Rightarrow -0.954$

 $\doteq -1.043$

≐ −0.954

- **8.** P(3, -1) is a terminal point of angle θ in standard position.
 - a) Determine the exact values of all the trigonometric ratios for θ .

```
Let the distance between the origin and P be r.

Use: x^2 + y^2 = r^2 Substitute: x = 3, y = -1

9 + 1 = r^2

r = \sqrt{10}

\sin \theta = -\frac{1}{\sqrt{10}} \csc \theta = -\sqrt{10} \cos \theta = \frac{3}{\sqrt{10}}

\sec \theta = \frac{\sqrt{10}}{3} \tan \theta = -\frac{1}{3} \cot \theta = -3
```

b) To the nearest tenth of a radian, determine possible values of θ in the domain $-2\pi \le \theta \le 2\pi$.

The terminal arm of angle θ lies in Quadrant 4. The reference angle is: $\tan^{-1}\left(\frac{1}{3}\right) = 0.3217...$ So, $\theta = -0.3217...$ The angle between 0 and 2π that is coterminal with -0.3217... is: $2\pi - 0.3217... = 5.9614...$ Possible values of θ are approximately: 6.0 and -0.3

6.4

9. Use graphing technology to graph each function below for $-2\pi \le x \le 2\pi$, then list these characteristics of the graph: amplitude, period, zeros, domain, range, and the equations of the asymptotes.

a) $y = \sin x$

The amplitude is 1. The period is 2π . The zeros are $0, \pm \pi, \pm 2\pi$. The domain is $-2\pi \le x \le 2\pi$. The range is $-1 \le y \le 1$. There are no asymptotes.

b) $y = \cos x$

The amplitude is 1. The period is 2π . The zeros are $\pm \frac{\pi}{2}$, $\pm \frac{3\pi}{2}$.

The domain is $-2\pi \le x \le 2\pi$. The range is $-1 \le y \le 1$. There are no asymptotes.

c) $y = \tan x$

There is no amplitude. The period is π . The zeros are $0, \pm \pi, \pm 2\pi$. The domain is $x \neq \pm \frac{\pi}{2}, \pm \frac{3\pi}{2}$. The range is $y \in \mathbb{R}$. The equations of the asymptotes are $x = \pm \frac{\pi}{2}$ and $x = \pm \frac{3\pi}{2}$.

- **10.** On the same grid, sketch graphs of the functions in each pair for
 - $0 \le x \le 2\pi$, then describe your strategy.

a)
$$y = \sin x$$
 and $y = \sin \left(x - \frac{\pi}{4}\right)$

For the graph of $y = \sin x$, I used the completed table of values from Lesson 6.4.

The horizontal scale is 1 square to $\frac{\pi}{4}$ units, because the phase shift is $\frac{\pi}{4}$. I then shifted several points $\frac{\pi}{4}$ units right and joined the points to get the graph of $y = \sin\left(x - \frac{\pi}{4}\right)$.

b)
$$y = \cos x$$
 and $y = \frac{3}{2} \cos x$

For the graph of $y = \cos x$, I used the completed table of values from Lesson 6.4.

I multiplied every *y*-coordinate by 1.5, plotted the new points, then joined them to get the graph of $y = \frac{3}{2} \cos x$.

6.6

11. a) Graph
$$y = \frac{1}{2} \sin 3\left(x + \frac{\pi}{6}\right) + 2$$
 for $-2\pi \le x \le 2\pi$.

Explain your strategy.

Sample response: I graphed $y = \frac{1}{2} \sin 3x$, shifted several points $\frac{\pi}{6}$ units left and 2 units up, then joined the points to get the graph of $y = \frac{1}{2} \sin 3\left(x + \frac{\pi}{6}\right) + 2$.

b) List the characteristics of the graph you drew.

The amplitude is $\frac{1}{2}$. The period is $\frac{2\pi}{3}$. There are no zeros. The domain is $-2\pi \le x \le 2\pi$. The range is $\frac{3}{2} \le y \le \frac{5}{2}$.

12. An equation of the function graphed below has the form $y = a \cos b(x - c) + d$. Identify the values of *a*, *b*, *c*, and *d* in the equation, then write an equation for the function.

$$y = f(x)$$

$$-\pi \quad 0 \qquad 2\pi \quad 3\pi \quad 4\pi$$

Sample response: The equation of the centre line is $y = \frac{1}{2}$, so the vertical translation is $\frac{1}{2}$ unit up and $d = \frac{1}{2}$. The amplitude is: $\frac{3 - (-2)}{2} = \frac{5}{2}$, so $a = \frac{5}{2}$ Choose the *x*-coordinates of two adjacent maximum points, $-\frac{\pi}{3}$ and $\frac{11\pi}{3}$. The period is: $\frac{11\pi}{3} - (-\frac{\pi}{3}) = 4\pi$ So, *b* is: $\frac{2\pi}{4\pi} = \frac{1}{2}$ To the left of the *y*-axis, the cosine function begins its cycle at $x = -\frac{\pi}{3}$, so a possible phase shift is $-\frac{\pi}{3}$, and $c = -\frac{\pi}{3}$. Substitute for *a*, *b*, *c*, and *d* in: $y = a \cos b(x - c) + d$ An equation is: $y = \frac{5}{2} \cos \frac{1}{2} (x + \frac{\pi}{3}) + \frac{1}{2}$

6.7

- **13.** A water wheel has diameter 10 m and completes 4 revolutions each minute. The axle of the wheel is 8 m above a river.
 - a) The wheel is at rest at time t = 0 s, with point P at the lowest point on the wheel. Determine a function that ^{8 m} models the height of P above the river, *h* metres, at any time *t* seconds. Explain how the characteristics of the graph relate to the given information.

The time for 1 revolution is 15 s. At t = 0, h = 3At t = 7.5, h = 13(7.5, 13)The graph begins at (0, 3), which is a minimum point. The first maximum point is at (7.5, 13). (15, 3)The next minimum point is after 1 cycle (0, 3) and it has coordinates (15, 3). t The position of the first maximum is 0 known, so use a cosine function: $h(t) = a \cos b(t - c) + d$ The constant in the equation of the centre line of the graph is the height of the axle above the river, so its equation is: h = 8; and this is also the vertical translation, so d = 8The amplitude is one-half the diameter of the wheel, so a = 5The period is the time for 1 revolution, so $b = \frac{2\pi}{15}$ A possible phase shift is: c = 7.5An equation is: $h(t) = 5 \cos \frac{2\pi}{15}(t - 7.5) + 8$

- **b**) Use technology to graph the function. Use this graph to determine:
 - i) the height of P after 35 s

Graph: Y = 5 cos $\frac{2\pi}{15}$ (X - 7.5) + 8 Determine the Y-value when X = 35. After 35 s, P is 10.5 m high. ii) the times, to the nearest tenth of a second, in the first 15 s of motion that P is 11 m above the river

Graph: Y = 5 cos $\frac{2\pi}{15}$ (X - 7.5) + 8 and Y = 11

Determine the Y-coordinates of the first two points of intersection. P is 11 m above the river after approximately 5.3 s and 9.7 s.