Lesson 7.1 Exercises, pages 577–581

Use graphing technology to solve each equation. Where necessary, round the roots to the nearest hundredth.

Α

4. Use a graphing calculator and enter the settings shown below to solve the equation $3 \cos x = 1.5$. State the restricted domain indicated by the WINDOW screen, then determine the roots of the equation over this domain.

The domain is: $-2\pi \le x \le 2\pi$ Graph the function, then determine the approximate *x*-coordinate of each point of intersection. X = -5.235988; X = -1.047198; X = 1.047198; X = 5.235988To the nearest hundredth, the roots are: $x = \pm 5.24, x = \pm 1.05$

5. Solve each equation for $0 \le x < 2\pi$.

a)
$$\sin x = \frac{2}{5}$$

Graph $y = \sin x$ and $y = \frac{2}{5}$.
The approximate x-coordinates
of the points of intersection are:
 $X = 0.41151685$ and
 $X = 2.7300758$
To the nearest hundredth, the
roots are: $x = 0.41$ and $x = 2.73$
b) $\cos x = -\frac{1}{3}$
Graph $y = \cos x$ and $y = -\frac{1}{3}$.
The approximate x-coordinates of
the points of intersection are:
 $X = 1.9106332$ and
 $X = 4.3725521$
To the nearest hundredth, the
roots are: $x = 0.41$ and $x = 2.73$

6. Solve the equation $\sin x = -\frac{4}{7}$ over the domain $0 \le x < 2\pi$. Assume *x* is an angle in standard position. In which quadrants do the terminal arms of the angles lie? How do you know?

Graph $y = \sin x$ and $y = -\frac{4}{7}$.

В

To the nearest hundredth, the roots are: x = 3.75 and x = 5.67The terminal arms lie in Quadrants 3 and 4 because the sine of an angle is negative when its terminal arm lies in those quadrants.

7. Solve each equation for $-2\pi \le x < 0$.

a) $\tan x - 3 = \cos x + 2$ Graph $y = \tan x - 3$ and $y = \cos x + 2$. To the nearest hundredth, the roots are: x = -4.90 and x = -1.78b) $2 = 4 \sin x - 3 \cos x$ Graph y = 2 and $y = 4 \sin x - 3 \cos x$. To the nearest hundredth, the roots are: x = -5.23 and x = -2.91

8. Use a graphing calculator and enter the settings below to solve a trigonometric equation. State the restricted domain indicated by the WINDOW screen, then determine the roots of the equation over this domain.

The domain is: $0 \le x \le 2\pi$ To the nearest hundredth, the roots are: x = 0.60 and x = 3.74

- **9.** Solve each equation for $0 \le x < 2\pi$, then write the general solution.
 - **a**) $5\sin^2 x \sin x = 2$

b) $3 \tan x - 1 = \tan^2 x$

Graph $y = 5 \sin^2 x - \sin x - 2$. To the nearest hundredth, the roots are: x = 0.83, x = 2.31, x = 3.71, and x = 5.71The period is 2π , so the general solution is approximately: $x = 0.83 + 2\pi k$, $k \in \mathbb{Z}$ or $x = 2.31 + 2\pi k$, $k \in \mathbb{Z}$ or $x = 3.71 + 2\pi k$, $k \in \mathbb{Z}$ or $x = 5.71 + 2\pi k$, $k \in \mathbb{Z}$

2

Graph $y = \tan^2 x - 3 \tan x + 1$. To the nearest hundredth, the roots are: x = 0.36, x = 1.21, x = 3.51, and x = 4.35The period is π , so the general solution is approximately: $x = 0.36 + \pi k$, $k \in \mathbb{Z}$ or $x = 1.21 + \pi k$, $k \in \mathbb{Z}$ **10.** Solve each equation for $0 \le x < 2\pi$, then write the general solution.

a) $\cos 3x = \frac{1}{2}$ **b**) $1 - 4 \tan 3x = -7$ Graph $y = \cos 3x - \frac{1}{2}$. Graph $y = 8 - 4 \tan 3x$. To the nearest hundredth, the To the nearest hundredth, the roots are: x = 0.35, x = 1.75. roots are: x = 0.37, x = 1.42, x = 2.46, x = 3.51, x = 4.56,x = 2.44, x = 3.84, x = 4.54,*x* = 5.61 *x* = 5.93 The period is $\frac{2\pi}{3}$, so the general The period is $\frac{\pi}{3}$, so the general solution is approximately: solution is approximately: $x = 0.37 + \frac{\pi k}{3}, k \in \mathbb{Z}$ $x = 0.35 + \frac{2\pi k}{2}, k \in \mathbb{Z}$ or $x = 1.75 + \frac{2\pi k}{2}, k \in \mathbb{Z}$

11. The first two positive roots of the equation $\sin 5x = \frac{1}{3}$ are $x \doteq 0.07$ and $x \doteq 0.56$. Determine the general solution of this equation. Explain how this solution is determined.

The period of the function is: $\frac{2\pi}{5} \doteq 1.26$ The graph of $y = \sin 5x - \frac{1}{3}$ indicates that the two given roots are the only zeros of the function in the domain $0 \le x \le \frac{2\pi}{5}$. So, the general solution is approximately: $x = 0.07 + \frac{2\pi k}{5}$, $k \in \mathbb{Z}$ or $x = 0.56 + \frac{2\pi k}{5}$, $k \in \mathbb{Z}$

- **12.** Solve each equation over the given domain, then write the general solution.
 - a) $\cos \pi x = 0$ for $-3 \le x \le 3$

Graph $y = \cos \pi x$. The graph is symmetrical about the *y*-axis. The roots are: $x = \pm 2.5$, $x = \pm 1.5$, $x = \pm 0.5$ The general solution is: x = 0.5 + k, $k \in \mathbb{Z}$

b) $-1 = 2 \sin 3\pi x$ for $-1 \le x \le 1$

Graph $y = 2 \sin 3\pi x + 1$. To the nearest hundredth, the roots are: x = -0.94, x = -0.72, x = -0.28, x = -0.06, x = 0.39, x = 0.61The period is $\frac{2\pi}{3\pi} = \frac{2}{3}$, so the general solution is approximately: $x = -0.72 + \frac{2k}{3}$, $k \in \mathbb{Z}$ or $x = -0.94 + \frac{2k}{3}$, $k \in \mathbb{Z}$ **13.** Solve each equation over the set of real numbers.

a) $3 \cos x = x^2 + 1$ Graph $y = 3 \cos x - x^2 - 1$. The solution is: $x = \pm 0.91$ b) $x^3 - 2 = 2 \sin x$ Graph $y = 2 \sin x - x^3 + 2$ The solution is: x = 1.59

14. a) Solve $\frac{\cos x}{1 - \sin x} = \frac{1 + \sin x}{\cos x}$ over the set of real numbers by graphing the two functions $y = \frac{\cos x}{1 - \sin x}$ and $y = \frac{1 + \sin x}{\cos x}$. What do you notice about the solution?

The graphs coincide so the solution is all real values of *x*, except for those values for which the denominators are 0.

b) The equation in part a is called an *identity*. Why is that an appropriate name?

One definition of identity is "exact likeness." This is appropriate because one side of the equation is exactly the same as the other side.

С

4

15. Solve each equation over the set of real numbers.

a) sec $x = \sqrt{4 - x^2}$ Graph $y = \frac{1}{\cos x} - \sqrt{4 - x^2}$ The solution is: $x \doteq \pm 0.96$ b) sin x + 2 = 2xGraph $y = \sin x + 2 - 2x$ The solution is: $x \doteq 1.50$

16. a) Solve each equation, and explain the results.

i) $\frac{\sin x}{x} = 1$ Graph $y = \frac{\sin x}{x} - 1$ There is no real solution. When x = 0, the left side is undefined ii) $\sin x = x$ Graph $y = \sin x - x$ The solution is x = 0.

b) Why are the solutions in part a different?

The solutions are different because in part i, x = 0 is non-permissible; while in part ii, x = 0 is permissible.

17. a) Solve each equation, and explain the results.

i) $\frac{\cos x}{x} = 1$ Graph $y = \frac{\cos x}{x} - 1$ The solution is: $x \doteq 0.74$ ii) $\cos x = x$ Graph $y = \cos x - x$ The solution is $x \doteq 0.74$

b) Why are the solutions in part a the same?

The solutions are the same because the equations are equivalent for $x \neq 0$.