Checkpoint: Assess Your Understanding, pages 602–604

7.1

1. Multiple Choice How many roots does the equation $\sin 6x = \frac{1}{3}$ have over the domain $0 \le x < 2\pi$?

A. 2 **B.** 4 **C.** 6 **D.** 12

- **2.** Use graphing technology to solve each equation over the given domain. Give the roots to the nearest hundredth.
 - a) $1 + 2 \sin x = 1 3 \cos x$; $0 \le x \le 2\pi$

Graph the corresponding function: $y = 2 \sin x + 3 \cos x$ Determine the approximate zeros in the given domain. The roots are approximately: x = 2.16 and x = 5.30Substitute each root into the given equation to verify.

b) $2 = \cos x + 2 \cos^2 x; -2\pi \le x \le 2\pi$

Graph the corresponding function: $y = \cos x + 2\cos^2 x - 2$ Determine the approximate zeros in the given domain. The roots are approximately: $x = \pm 0.67$ and $x = \pm 5.61$ Substitute each root into the given equation to verify. **3.** Use graphing technology to determine the general solution of each equation over the set of real numbers. Give the answers to the nearest hundredth.

a)
$$4 \tan x - 5 = 0$$

Graph the corresponding function: $y = 4 \tan x - 5$ The period of the function is π . Determine the zero in the domain $0 \le x < \pi$. The root is approximately: x = 0.90The general solution is approximately: $x = 0.90 + \pi k, k \in \mathbb{Z}$

b) $6\cos^2 x + \cos x = 1$

Graph the corresponding function: $y = 6 \cos^2 x + \cos x - 1$ The period of the function is 2π . Determine the zeros in the domain $0 \le x < 2\pi$. The roots are approximately: x = 1.23, x = 2.09, x = 4.19, x = 5.05The general solution is approximately: $x = 1.23 + 2\pi k, k \in \mathbb{Z}$ or $x = 2.09 + 2\pi k, k \in \mathbb{Z}$ or $x = 4.19 + 2\pi k, k \in \mathbb{Z}$ or $x = 5.05 + 2\pi k, k \in \mathbb{Z}$

7.2

4. Multiple Choice Which number is a root of the equation $3 \sin x + 1 = 5 \sin x - 1$ over the domain $0 \le x < 2\pi$?

A. 0	Β. π	$\mathbb{C},\frac{\pi}{2}$	D. $\frac{3\pi}{2}$
		_	_

5. Use algebra to solve the equation $\sqrt{2} \cos 2x + 1 = 0$ over the domain $-\pi < x < \pi$, then write the general solution of the equation.

 $\sqrt{2}\cos 2x = -1$ $\cos 2x = -\frac{1}{\sqrt{2}}$

The terminal arm of angle 2x lies in Quadrant 2 or 3. The reference angle for angle 2x is: $\cos^{-1}\left(\frac{1}{\sqrt{2}}\right) = \frac{\pi}{4}$ In Quadrant 2, $2x = \frac{3\pi}{4}$ In Quadrant 3, $2x = -\frac{3\pi}{4}$ $x = \frac{3\pi}{8}$ $x = -\frac{3\pi}{8}$ The period of cos 2x is π , so other roots are: $x = \frac{3\pi}{8} - \pi$ and $x = -\frac{3\pi}{8} + \pi$ $x = -\frac{5\pi}{8}$ $x = \frac{5\pi}{8}$ The roots are: $x = \pm \frac{3\pi}{8}$ and $x = \pm \frac{5\pi}{8}$ The general solution is: $x = \frac{3\pi}{8} + \pi k$, $k \in \mathbb{Z}$ or $x = \frac{5\pi}{8} + \pi k$, $k \in \mathbb{Z}$ **6.** Verify that $\frac{\pi}{6}$ and $\frac{5\pi}{6}$ are two roots of the equation $4\cos^2 x - 3 = 0$.

Substitute each given value in the equation.

For
$$x = \frac{\pi}{6}$$
:
L.S. $= 4 \cos^2\left(\frac{\pi}{6}\right) - 3$
 $= 4\left(\frac{\sqrt{3}}{2}\right)^2 - 3$
 $= 0$
 $= R.S.$
For $x = \frac{5\pi}{6}$:
L.S. $= 4 \cos^2\left(\frac{5\pi}{6}\right) - 3$
 $= 4\left(-\frac{\sqrt{3}}{2}\right)^2 - 3$
 $= 0$
 $= R.S.$

For each value of *x*, the left side is equal to the right side, so the roots are verified.

7. Use algebra to solve the equation $10 \sin^2 x + 11 \sin x = -3$ over the domain $90^\circ \le x \le 360^\circ$. Give the roots to the nearest degree.

```
10 \sin^2 x + 11 \sin x + 3 = 0
(2 \sin x + 1)(5 \sin x + 3) = 0
Either 2 \sin x + 1 = 0
                                                    or 5 \sin x + 3 = 0
               \sin x = -0.5
                                                               \sin x = -0.6
The reference angle is: \sin^{-1}(0.5) = 30^{\circ}
                                                    The reference angle is: \sin^{-1}(0.6) = 37^{\circ}
The terminal arm of angle x lies in
                                                    The terminal arm of angle x lies in
Quadrant 3 or 4.
                                                    Quadrant 3 or 4.
In Quadrant 3, x = 180^{\circ} + 30^{\circ}, or 210°
                                                    In Quadrant 3, x \doteq 180^{\circ} + 37^{\circ}, or 217°
                                                    In Quadrant 4, x \doteq 360^\circ - 37^\circ, or 323°
In Quadrant 4, x = 360^{\circ} - 30^{\circ}, or 330°
The roots are: x = 210^{\circ}, x \doteq 217^{\circ}, x \doteq 323^{\circ}, x = 330^{\circ}
```