Lesson 8.6 Exercises, pages 743-749

A

3. Expand using Pascal's triangle.
a) $(x+1)^{5}$

The exponent is 5 , so use the terms in row 6 of Pascal's triangle as coefficients: 1, 5, 10, 10, 5, 1

$$
\begin{aligned}
(x+1)^{5} & =1(x)^{5}+5(x)^{4}(1)+10(x)^{3}(1)^{2}+10(x)^{2}(1)^{3}+5(x)^{1}(1)^{4}+1(1)^{5} \\
& =x^{5}+5 x^{4}+10 x^{3}+10 x^{2}+5 x+1
\end{aligned}
$$

b) $(x-1)^{6}$

The exponent is 6 , so use the terms in row 7 of Pascal's triangle as coefficients: $1,6,15,20,15,6,1$

$$
\begin{aligned}
(x-1)^{6}= & 1(x)^{6}+6(x)^{5}(-1)+15(x)^{4}(-1)^{2}+20(x)^{3}(-1)^{3} \\
& +15(x)^{2}(-1)^{4}+6(x)(-1)^{5}+1(-1)^{6} \\
= & x^{6}-6 x^{5}+15 x^{4}-20 x^{3}+15 x^{2}-6 x+1
\end{aligned}
$$

c) $(x+y)^{4}$

The exponent is 4 , so use the terms in row 5 of Pascal's triangle as coefficients: $1,4,6,4,1$

$$
\begin{aligned}
(x+y)^{4} & =1(x)^{4}+4(x)^{3}(y)+6(x)^{2}(y)^{2}+4(x)(y)^{3}+1(y)^{4} \\
& =x^{4}+4 x^{3} y+6 x^{2} y^{2}+4 x y^{3}+y^{4}
\end{aligned}
$$

d) $(x-y)^{8}$

The exponent is 8 , so use the terms in row 9 of Pascal's triangle as coefficients: $1,8,28,56,70,56,28,8,1$

$$
\begin{aligned}
(x-y)^{8}= & 1(x)^{8}+8(x)^{7}(-y)+28(x)^{6}(-y)^{2}+56(x)^{5}(-y)^{3}+70(x)^{4}(-y)^{4} \\
& +56(x)^{4}(-y)^{5}+28(x)^{2}(-y)^{6}+8(x)(-y)^{7}+1(-y)^{8} \\
= & x^{8}-8 x^{7} y+28 x^{6} y^{2}-56 x^{5} y^{3}+70 x^{4} y^{4}-56 x^{3} y^{5} \\
& +28 x^{2} y^{6}-8 x y^{7}+y^{8}
\end{aligned}
$$

4. Determine each missing number in the expansion of $(x+y)^{7}$. $x^{7}+\square x^{6} y+21 x^{5} y^{2}+35 x^{\square} y^{3}+\square x^{3} y^{4}+21 x^{\square} y^{\square}+7 x y^{6}+y^{\square}$
The exponent is 7 , so the coefficients of the terms in the expansion are the terms in row 8 of Pascal's triangle: 1, 7, 21, 35, 35, 21, 7, 1
The exponents in each term must add to 7 .
The exponents of the powers of x start at 7 and decrease by 1 each time.
The exponents of the powers of y start at 0 and increase by 1 each time.
So, the missing numbers are: $7,4,35,2,5,7$
5. Determine the indicated term in each expansion.
a) the last term in $(x+1)^{9}$

The last term in the expansion of $(x+y)^{n}$ is y^{n}.
So, the last term in the expansion of $(x+1)^{9}$ is 1^{9}, or 1 .
b) the 1 st term in $(x-1)^{12}$

The first term in the expansion of $(x+y)^{n}$ is x^{n}.
So, the first term in the expansion of $(x-1)^{12}$ is x^{12}.

B
6. a) Multiply 4 factors of $(x-5)$.

$$
\begin{aligned}
(x-5)^{4} & =(x-5)(x-5)(x-5)(x-5) \\
& =\left(x^{2}-10 x+25\right)\left(x^{2}-10 x+25\right) \\
& =x^{4}-10 x^{3}+25 x^{2}-10 x^{3}+100 x^{2}-250 x+25 x^{2}-250 x+625 \\
& =x^{4}-20 x^{3}+150 x^{2}-500 x+625
\end{aligned}
$$

b) Use the binomial theorem to expand $(x-5)^{4}$.

$$
\begin{aligned}
&(x+y)^{n}={ }_{n} \mathrm{C}_{0} x^{n}+{ }_{n} \mathrm{C}_{1} x^{n-1} y+{ }_{n} \mathrm{C}_{2} x^{n-2} y^{2}+\ldots+{ }_{n} \mathrm{C}_{n} y^{n} \\
& \text { Substitute: } n=44, y=-5 \\
&(x-5)^{4}={ }_{4} \mathrm{C}_{0}(x)^{4}+{ }_{4} \mathrm{C}_{1}(x)^{4-1}(-5)+{ }_{4} \mathrm{C}_{2}(x)^{4-2}(-5)^{2} \\
&+{ }_{4} \mathrm{C}_{3}(x)^{4-3}(-5)^{3}+{ }_{4} \mathrm{C}_{4}(-5)^{4} \\
&= 1(x)^{4}+4(x)^{3}(-5)+6(x)^{2}(25)+4(x)^{1}(-125)+1(625) \\
&= x^{4}-20 x^{3}+150 x^{2}-500 x+625
\end{aligned}
$$

c) Compare the two methods. What conclusions can you make?

I find it easier to use the binomial theorem; it saves time and it is less cumbersome than multiplying 4 factors.
7. Expand using the binomial theorem.
a) $(x+2)^{6}$

$$
(x+y)^{n}={ }_{n} \mathrm{C}_{0} x^{n}+{ }_{n} \mathrm{C}_{1} x^{n-1} y+{ }_{n} \mathrm{C}_{2} x^{n-2} y^{2}+\ldots+{ }_{n} \mathrm{C}_{n} y^{n}
$$

$$
\text { Substitute: } n=6, y=2
$$

$$
\begin{aligned}
(x+2)^{6}= & { }_{6} \mathrm{C}_{0}(x)^{6}+{ }_{6} \mathrm{C}_{1}(x)^{6-1}(2)+{ }_{6} \mathrm{C}_{2}(x)^{6-2}(2)^{2}+{ }_{6} \mathrm{C}_{3}(x)^{6-3}(2)^{3} \\
& +{ }_{6} \mathrm{C}_{4}(x)^{6-4}(2)^{4}+{ }_{6} \mathrm{C}_{5}(x)^{6-5}(2)^{5}+{ }_{6} \mathrm{C}_{6}(2)^{6} \\
= & 1(x)^{6}+6(x)^{5}(2)+15(x)^{4}(4)+20(x)^{3}(8)+15(x)^{2}(16) \\
& +6(x)^{1}(32)+1(64) \\
= & x^{6}+12 x^{5}+60 x^{4}+160 x^{3}+240 x^{2}+192 x+64
\end{aligned}
$$

b) $\left(x^{2}-3\right)^{5}$
$(x+y)^{n}={ }_{n} \mathrm{C}_{0} x^{n}+{ }_{n} \mathrm{C}_{1} x^{n-1} y+{ }_{n} \mathrm{C}_{2} x^{n-2} y^{2}+\ldots+{ }_{n} \mathrm{C}_{n} y^{n}$
Substitute: $n=5, x=x^{2}, y=-3$

$$
\begin{aligned}
\left(x^{2}-3\right)^{5}= & { }_{5} \mathrm{C}_{0}\left(x^{2}\right)^{5}+{ }_{5} \mathrm{C}_{1}\left(x^{2}\right)^{4}(-3)+{ }_{5} \mathrm{C}_{2}\left(x^{2}\right)^{3}(-3)^{2}+{ }_{5} \mathrm{C}_{3}\left(x^{2}\right)^{2}(-3)^{3} \\
& +{ }_{5} \mathrm{C}_{4}\left(x^{2}\right)^{1}(-3)^{4}+{ }_{5} \mathrm{C}_{5}(-3)^{5} \\
= & 1\left(x^{10}\right)+5\left(x^{2}\right)^{4}(-3)+10\left(x^{2}\right)^{3}(9)+10\left(x^{2}\right)^{2}(-27) \\
& +5\left(x^{2}\right)^{1}(81)+1(-243) \\
= & x^{10}-15 x^{8}+90 x^{6}-270 x^{4}+405 x^{2}-243
\end{aligned}
$$

c) $(3 x-2)^{4}$
$(x+y)^{n}={ }_{n} \mathrm{C}_{0} x^{n}+{ }_{n} \mathrm{C}_{1} x^{n-1} y+{ }_{n} \mathrm{C}_{2} x^{n-2} y^{2}+\ldots+{ }_{n} \mathrm{c}_{n} y^{n}$
Substitute: $n=4, x=3 x, y=-2$

$$
\begin{aligned}
(3 x-2)^{4}= & { }_{4} \mathrm{C}_{0}(3 x)^{4}+{ }_{4} \mathrm{C}_{1}(3 x)^{3}(-2)+{ }_{4} \mathrm{C}_{2}(3 x)^{2}(-2)^{2}+{ }_{4} \mathrm{C}_{3}(3 x)(-2)^{3} \\
& +{ }_{4} \mathrm{C}_{4}(-2)^{4} \\
= & 1\left(81 x^{4}\right)+4\left(27 x^{3}\right)(-2)+6\left(9 x^{2}\right)(4)+4(3 x)(-8)+1(16) \\
= & 81 x^{4}-216 x^{3}+216 x^{2}-96 x+16
\end{aligned}
$$

d) $(-2+2 x)^{4}$
$(x+y)^{n}={ }_{n} \mathrm{C}_{0} x^{n}+{ }_{n} \mathrm{C}_{1} x^{n-1} y+{ }_{n} \mathrm{C}_{2} x^{n-2} y^{2}+\ldots+{ }_{n} \mathrm{C}_{n} y^{n}$
Substitute: $n=4, x=-2, y=2 x$

$$
\begin{aligned}
(-2+2 x)^{4}= & { }_{4} \mathrm{C}_{0}(-2)^{4}+{ }_{4} \mathrm{C}_{1}(-2)^{3}(2 x)+{ }_{4} \mathrm{C}_{2}(-2)^{2}(2 x)^{2} \\
& +{ }_{4} \mathrm{C}_{3}(-2)(2 x)^{3}+{ }_{4} \mathrm{C}_{4}(2 x)^{4} \\
= & 1(16)+4(-8)(2 x)+6(4)\left(4 x^{2}\right)+4(-2)\left(8 x^{3}\right)+1\left(16 x^{4}\right) \\
= & 16-64 x+96 x^{2}-64 x^{3}+16 x^{4}
\end{aligned}
$$

e) $\left(-4+3 x^{4}\right)^{5}$
$(x+y)^{n}={ }_{n} \mathrm{C}_{0} x^{n}+{ }_{n} \mathrm{C}_{1} x^{n-1} y+{ }_{n} \mathrm{C}_{2} x^{n-2} y^{2}+\ldots+{ }_{n} \mathrm{C}_{n} y^{n}$
Substitute: $n=5, x=-4, y=3 x^{4}$

$$
\begin{aligned}
\left(-4+3 x^{4}\right)^{5}= & { }_{5} C_{0}(-4)^{5}+{ }_{5} \mathrm{C}_{1}(-4)^{4}\left(3 x^{4}\right)+{ }_{5} \mathrm{C}_{2}(-4)^{3}\left(3 x^{4}\right)^{2}+{ }_{5} \mathrm{C}_{3}(-4)^{2}\left(3 x^{4}\right)^{3} \\
& +{ }_{5} \mathrm{C}_{4}(-4)\left(3 x^{4}\right)^{4}+{ }_{5} \mathrm{C}_{5}\left(3 x^{4}\right)^{5} \\
= & 1(-1024)+5(256)\left(3 x^{4}\right)+10(-64)\left(9 x^{8}\right)+10(16)\left(27 x^{12}\right) \\
& +5(-4)\left(81 x^{16}\right)+1\left(243 x^{20}\right) \\
= & -1024+3840 x^{4}-5760 x^{8}+4320 x^{12}-1620 x^{16}+243 x^{20}
\end{aligned}
$$

8. a) Write the terms in row 7 of Pascal's triangle.
$1,6,15,20,15,6,1$
b) Use your answer to part a to write the first 3 terms in each expansion.
i) $(x-3)^{6}$

The exponent is 6 , so the terms in row 7 of Pascal's triangle are the coefficients of the terms in the expansion of the binomial.
So, $(x+y)^{6}=1 x^{6}+6 x^{5} y+15 x^{4} y^{2}+\ldots$
Substitute: $y=-3$
$(x-3)^{6}=1 x^{6}+6 x^{5}(-3)+15 x^{4}(-3)^{2}+\ldots$ $=x^{6}-18 x^{5}+135 x^{4}+\ldots$
So, the first 3 terms in the expansion are: $x^{6}-18 x^{5}+135 x^{4}$
ii) $(a+4 b)^{6}$
$(x+y)^{6}=1 x^{6}+6 x^{5} y+15 x^{4} y^{2}+\ldots$
Substitute: $x=a, y=4 b$

$$
\begin{aligned}
(a+4 b)^{6} & =1 a^{6}+6 a^{5}(4 b)+15 a^{4}(4 b)^{2}+\ldots \\
& =a^{6}+24 a^{5} b+240 a^{4} b^{2}+\ldots
\end{aligned}
$$

So, the first 3 terms in the expansion are: $a^{6}+24 a^{5} b+240 a^{4} b^{2}$
iii) $(-2 a+1)^{6}$
$(x+y)^{6}=1 x^{6}+6 x^{5} y+15 x^{4} y^{2}+\ldots$
Substitute: $x=-2 a, y=1$

$$
\begin{aligned}
(-2 a+1)^{6} & =1(-2 a)^{6}+6(-2 a)^{5}(1)+15(-2 a)^{4}(1)^{2}+\ldots \\
& =64 a^{6}-192 a^{5}+240 a^{4}+\ldots
\end{aligned}
$$

So, the first 3 terms in the expansion are: $64 a^{6}-192 a^{5}+240 a^{4}$
iv) $\left(2 x+5 y^{2}\right)^{6}$

$$
\begin{aligned}
& (x+y)^{6}=1 x^{6}+6 x^{5} y+15 x^{4} y^{2}+\ldots \\
& \text { Substitute: } x=2 x, y=5 y^{2} \\
& \begin{aligned}
\left(2 x+5 y^{2}\right)^{6} & =1(2 x)^{6}+6(2 x)^{5}\left(5 y^{2}\right)+15(2 x)^{4}\left(5 y^{2}\right)^{2}+\ldots \\
& =64 x^{6}+960 x^{5} y^{2}+6000 x^{4} y^{4}+\ldots
\end{aligned}
\end{aligned}
$$

So, the first 3 terms in the expansion are: $64 x^{6}+960 x^{5} y^{2}+6000 x^{4} y^{4}$
9. Determine the coefficient of each term.
a) x^{5} in $(x+1)^{8}$
b) x^{9} in $(x+y)^{9}$
x^{5} is the 4th term in $(x+1)^{8}$.
x^{9} is the first term in the expansion
The coefficient of the 4th term is:
${ }_{8} \mathrm{C}_{4-1}$ or ${ }_{8} \mathrm{C}_{3}$ of $(x+y)^{9}$.
So, the coefficient of x^{9} is 1 .
${ }_{8} \mathrm{C}_{3}=56$
So, the coefficient of x^{5} is 56 .
c) $x^{2} y$ in $(x+y)^{3}$

The coefficients of the terms will be the terms in row 4 of Pascal's triangle: 1, 3, 3, 1 $x^{2} y$ is the 2nd term in the expansion of $(x+y)^{3}$. So, the coefficient of $x^{2} y$ is 3 .
d) $x^{2} y^{3}$ in $(x+y)^{5}$

The coefficients of the terms will be the terms in row 6 of Pascal's triangle: 1, 5, 10, 10, 5, 1 $x^{2} y^{3}$ is the 4th term in the expansion of $(x+y)^{5}$. So, the coefficient of $x^{2} y^{3}$ is 10 .
10. Explain why the coefficients of the 3rd term and the 3rd-last term in the expansion of $(x+y)^{n}, n \geq 2$, are the same.

Since each of x and y has coefficient 1 , the coefficients of the terms in the expansion of $(x+y)^{n}$ correspond to the terms in row $(n+1)$ of Pascal's triangle.
In any row of Pascal's triangle, the 3rd term and 3rd-last term are the same.
11. Determine the indicated term in each expansion.
a) the last term in $(3 x+2)^{5}$
The last term in the expansion
of $(x+y)^{n}$ is y^{n}.
Substitute: $y=2, n=5$
$2^{5}=32$
So, the last term is 32 .
b) the 1 st term in $(-2 x+5)^{7}$
The first term in the expansion of $(x+y)^{n}$ is x^{n}.
Substitute: $x=-2 x, n=7$
$(-2 x)^{7}=-128 x^{7}$
So, the 1 st term is $-128 x^{7}$.
c) the 2 nd term in $(3 x-3)^{4}$
d) the 6th term in $(4 x+1)^{8}$

The second term in the expansion of $(x+y)^{n}$ is $n x^{n-1} y$.
Substitute: $x=3 x, y=-3$,
$n=4$
$4(3 x)^{3}(-3)=-324 x^{3}$
So, the 2nd term is $-324 x^{3}$.

The k th term is: ${ }_{n} \mathrm{C}_{k-1} x^{n-(k-1)} y^{k-1}$ Substitute: $n=8, k=6, x=4 x$,
$y=1$

$$
\begin{aligned}
{ }_{8} C_{5}(4 x)^{3}(1)^{5} & =56\left(64 x^{3}\right)(1) \\
& =3584 x^{3}
\end{aligned}
$$

So, the 6th term is $3584 x^{3}$.
12. When will the coefficients of the terms in the expansion of $(a x+b)^{n}$ be the same as the terms in row $(n+1)$ of Pascal's triangle?

The coefficients of the terms in the expansion of $(x+y)^{n}$ correspond to the terms in row $(n+1)$ of Pascal's triangle. So, both a and b must equal 1.
13. Expand and simplify $(x+1)^{8}+(x-1)^{8}$. What strategy did you use?

The coefficients of the terms in the expansion of $(x+1)^{8}$ are the terms in row 9 of Pascal's triangle: $1,8,28,56,70,56,28,8,1$
The coefficients of the terms in the expansion of $(x-1)^{8}$ depend on whether the term number is odd or even. When the term numbers are odd, the coefficients are the terms in row 9 of Pascal's triangle. When the term numbers are even, the coefficients are the opposites of the terms in row 9. So, the coefficients of the terms in the expansion of $(x-1)^{8}$ are:
$1,-8,28,-56,70,-56,28,-8,1$
When the terms in the two expansions are added, every second term is eliminated as the sum of the terms is 0 .
$(x+1)^{8}+(x-1)^{8}=2 x^{8}+56 x^{6}+140 x^{4}+56 x^{2}+2$
14. a) Show that the expansion of $(-2 x+1)^{6}$ is the same as the expansion of $(2 x-1)^{6}$.

Use row 7 of Pascal's triangle: $1,6,15,20,15,6,1$

$$
\begin{aligned}
(-2 x+1)^{6}= & 1(-2 x)^{6}+6(-2 x)^{5}(1)+15(-2 x)^{4}(1)^{2}+20(-2 x)^{3}(1)^{3} \\
& +15(-2 x)^{2}(1)^{4}+6(-2 x)^{1}(1)^{5}+(1)^{6} \\
= & 64 x^{6}+6\left(-32 x^{5}\right)+15\left(16 x^{4}\right)+20\left(-8 x^{3}\right)+15\left(4 x^{2}\right)+6(-2 x)+1 \\
= & 64 x^{6}-192 x^{5}+240 x^{4}-160 x^{3}+60 x^{2}-12 x+1 \\
(2 x-1)^{6}= & 1(2 x)^{6}+6(2 x)^{5}(-1)+15(2 x)^{4}(-1)^{2}+20(2 x)^{3}(-1)^{3} \\
& +15(2 x)^{2}(-1)^{4}+6(2 x)^{1}(-1)^{5}+(-1)^{6} \\
= & 64 x^{6}+6\left(32 x^{5}\right)(-1)+15\left(16 x^{4}\right)+20\left(8 x^{3}\right)(-1)+15\left(4 x^{2}\right) \\
& +6(2 x)(-1)+1 \\
= & 64 x^{6}-192 x^{5}+240 x^{4}-160 x^{3}+60 x^{2}-12 x+1
\end{aligned}
$$

b) Will $(-a x+b)^{n}$ always have the same expansion as $(a x-b)^{n}$?

Explain.
No, when n is odd, the expansions will not be the same. For example, look at the first terms in the expansions of $(-2 x+1)^{3}$ and $(2 x-1)^{3}$.
For $(-2 x+1)^{3}$: the 1st term in the expansion is: $1(-2 x)^{3}=-8 x^{3}$
For $(2 x-1)^{3}$: the 1st term in the expansion is: $1(2 x)^{3}=8 x^{3}$
Since the 1 st terms are different, the expansions are not the same.
15. Which binomial power when expanded results in
$16 x^{4}-32 x^{3}+24 x^{2}-8 x+1 ?$
What strategy did you use to find out?
The first term is $16 x^{4}$. The exponent of x is 4 , so the binomial has the form $(a x+b)^{4}$.
The coefficient a must be $\sqrt[4]{16}$: $a=2$, or $a=-2$
The last term is 1 , so b is either 1 or -1 because $(-1)^{4}=1^{4}$, or 1 .
The terms alternate in sign, so the coefficients a and b must have different signs.
The binomial power is either $(-2 x+1)^{4}$ or $(2 x-1)^{4}$.
16. Expand using the binomial theorem.
a) $(0.2 x-1.2 y)^{5}$

$$
\begin{aligned}
&(x+y)^{n}={ }_{n} \mathrm{C}_{0} x^{n}+{ }_{n} \mathrm{C}_{1} x^{n-1} y+{ }_{n} \mathrm{C}_{2} x^{n-2} y^{2}+\ldots+{ }_{n} \mathrm{C}_{n} y^{n} \\
& \text { Substitute: } n=5, \\
&(0.2 x-1.2 y)^{5}={ }_{5} \mathrm{C}_{0}(0.2 x)^{5}+{ }_{5} \mathrm{C}_{1}(0.2 x)^{4}(-1.2 y)+{ }_{5} \mathrm{C}_{2}(0.2 x)^{3}(-1.2 y)^{2} \\
&+{ }_{5} \mathrm{C}_{3}(0.2 x)^{2}(-1.2 y)^{3}+{ }_{5} \mathrm{C}_{4}(0.2 x)(-1.2 y)^{4}+{ }_{5} \mathrm{C}_{5}(-1.2 y)^{5} \\
&= 1\left(0.00032 x^{5}\right)+5\left(0.0016 x^{4}\right)(-1.2 y)+10\left(0.008 x^{3}\right)\left(1.44 y^{2}\right) \\
&+10\left(0.04 x^{2}\right)\left(-1.728 y^{3}\right)+5(0.2 x)\left(2.0736 y^{4}\right)+1\left(-2.48832 y^{5}\right) \\
&= 0.00032 x^{5}-0.0096 x^{4} y+0.1152 x^{3} y^{2}-0.6912 x^{2} y^{3} \\
&+2.0736 x y^{4}-2.48832 y^{5}
\end{aligned}
$$

b) $\left(\frac{3}{8} a+\frac{1}{6} b\right)^{4}$

$$
(x+y)^{n}={ }_{n} \mathrm{C}_{0} x^{n}+{ }_{n} \mathrm{C}_{1} x^{n-1} y+{ }_{n} \mathrm{C}_{2} x^{n-2} y^{2}+\ldots+{ }_{n} \mathrm{C}_{n} y^{n}
$$

Substitute: $n=4, x=\frac{3}{8} a, y=\frac{1}{6} b$

$$
\begin{aligned}
\left(\frac{3}{8} a+\frac{1}{6} b\right)^{4}= & { }_{4} C_{0}\left(\frac{3}{8} a\right)^{4}+{ }_{4} C_{1}\left(\frac{3}{8} a\right)^{3}\left(\frac{1}{6} b\right)+{ }_{4} C_{2}\left(\frac{3}{8} a\right)^{2}\left(\frac{1}{6} b\right)^{2} \\
& +{ }_{4} C_{3}\left(\frac{3}{8} a\right)\left(\frac{1}{6} b\right)^{3}+{ }_{4} C_{4}\left(\frac{1}{6} b\right)^{4} \\
= & 1\left(\frac{81}{4096} a^{4}\right)+4\left(\frac{27}{512} a^{3}\right)\left(\frac{1}{6} b\right)+6\left(\frac{9}{64} a^{2}\right)\left(\frac{1}{36} b^{2}\right) \\
& +4\left(\frac{3}{8} a\right)\left(\frac{1}{216} b^{3}\right)+1\left(\frac{1}{1296} b^{4}\right) \\
= & \frac{81}{4096} a^{4}+\frac{27}{768} a^{3} b+\frac{9}{384} a^{2} b^{2}+\frac{3}{432} a b^{3}+\frac{1}{1296} b^{4} \\
= & \frac{81}{4096} a^{4}+\frac{9}{256} a^{3} b+\frac{3}{128} a^{2} b^{2}+\frac{1}{144} a b^{3}+\frac{1}{1296} b^{4}
\end{aligned}
$$

C

17. Determine the 3rd term in the expansion of $\left(x^{2}+2 x+1\right)^{6}$.

$$
\begin{aligned}
\left(x^{2}+2 x+1\right)= & (x+1)^{2} \\
\text { So, }\left(x^{2}+2 x+1\right)^{6} & =\left((x+1)^{2}\right)^{6} \\
& =(x+1)^{12}
\end{aligned}
$$

The coefficients in the expansion of $(x+1)^{12}$ are the terms in row 13 of Pascal's triangle.
The 3rd term in row 13 is 66 .
So, the 3rd term in the expansion of $\left(x^{2}+2 x+1\right)^{6}$ is: $66(x)^{10}(1)^{2}$, or $66 x^{10}$
18. a) Show that ${ }_{n} \mathrm{C}_{0}+{ }_{n} \mathrm{C}_{1}+{ }_{n} \mathrm{C}_{2}+\ldots+{ }_{n} \mathrm{C}_{n-1}+{ }_{n} \mathrm{C}_{n}=2^{n}$

Express 2^{n} as the binomial $(1+1)^{n}$ and expand:
$(1+1)^{n}={ }_{n} \mathrm{C}_{0}(1)^{n}+{ }_{n} \mathrm{C}_{1}(1)^{n-1}(1)+{ }_{n} \mathrm{C}_{2}(1)^{n-2}(1)^{2}+\ldots$
$+{ }_{n} \mathrm{C}_{n-1}(1)(1)^{n-1}+{ }_{n} \mathrm{C}_{n}(1)^{n}$
So, $2^{n}={ }_{n} \mathrm{C}_{0}+{ }_{n} \mathrm{C}_{1}+{ }_{n} \mathrm{C}_{2}+\ldots+{ }_{n} \mathrm{C}_{n-1}+{ }_{n} \mathrm{C}_{n}$
b) What does the relationship in part a indicate about the sum of the terms in any row of Pascal's triangle?
${ }_{n} \mathrm{C}_{0},{ }_{n} \mathrm{C}_{1}{ }_{n} \mathrm{C}_{2}, \ldots{ }_{n} \mathrm{C}_{n-1}{ }_{n} \mathrm{C}_{n}$ are the terms in row ($n+1$) of the triangle. From part a, the sum of these terms is 2^{n}.
So, the sum of the terms in any row of Pascal's triangle is a power of 2.

