Grade 12
Pre-Calculus M athematics Achievement Test

Booklet 2

Manitoba Education and Advanced Learning Cataloguing in Publication Data
Grade 12 pre-calculus mathematics achievement test. Booklet 2. June 2014 [electronic resource]

ISBN: 978-0-7711-5589-5

1. Mathematics-Examinations, questions, etc.
2. Educational tests and measurements-Manitoba.
3. Mathematics-Study and teaching (Secondary)-Manitoba.
4. Calculus-Study and teaching (Secondary)-Manitoba.
5. Mathematical ability-Testing.
I. Manitoba. Manitoba Education and Advanced Learning.
515.076

Manitoba Education and Advanced Learning
School Programs Division
Winnipeg, Manitoba, Canada
Permission is hereby given to reproduce this document for non-profit educational purposes provided the source is cited.

After the administration of this test, print copies of this resource will be available for purchase from the Manitoba Text Book Bureau. Order online at <www.mtbb.mb.ca>.

This resource will also be available on the Manitoba Education and Advanced Learning website at <www.edu.gov.mb.ca/k12/assess/archives/index.html>.

Websites are subject to change without notice.

Disponible en français.
Available in alternate formats upon request.

Instructions

Multiple-Choice Questions

B There are 10 questions each worth one mark.
ß Calculators are not allowed for this part of the test.
B You may use the spaces beside each question for rough work.
B Provide only one answer per question.
B There is no penalty for guessing.
B Record your answers on the sheet provided.

Short and Long Answer Questions

B There are 20 questions worth a total of 44 marks.
B Calculators are not allowed for this part of the test.
B For full marks, your answer must show all pertinent diagrams, calculations, and explanations.

B Your solutions should be neat, clear, and well organized.
B Write each solution in the space provided.

No marks will be awarded for work done on this page.

Given the graph of the function of $f(x)$ below, what is the range of $y=|f(x)|$?

a) $y \in{ }^{\circ}$
b) $y \geq-7$
c) $y \geq 0$
d) $-4 \leq y \leq-1$ or $y \geq 4$

Simplify the following expression:

$$
\frac{1}{2} \log _{a} 36-\log _{a} 2
$$

a) $\log _{a} 3$
b) $\log _{a} 4$
c) $\log _{a} 9$
d) $\log _{a} 12$

Given $f(x)=x^{2}-x+2$, an equation that represents the graph of $f(x)$ shifted 3 units to the right is:
a) $y=(x+3)^{2}-(x+3)-3$
b) $y=(x-3)^{2}-(x-3)+2$
c) $y=(x-3)^{2}-x-2$
d) $y=x^{2}-x+2-3$

Question 23

What is the domain of the function $y=\sqrt{-4 x}$?
a) $\left\{x \in{ }^{\circ} \mid x \geq 2\right\}$
b) $\left\{x \in{ }^{\circ} \mid x \leq 2\right\}$
c) $\left\{x \in{ }^{\circ} \mid x \geq 0\right\}$
d) $\left\{x \in{ }^{\circ} \mid x \leq 0\right\}$

Which of the following is true about the two functions below?

$$
f(x)=\frac{(x+2)(x-2)}{x-2} \quad g(x)=\frac{(x-2)(x+1)}{(x+2)(x-2)}
$$

a) Both have a point of discontinuity (hole) when $x=2$.
b) Both have the same vertical asymptote.
c) Both have the same horizontal asymptote.
d) Both have the same y-intercept.

The general solution to the equation $\cos \theta=-\frac{1}{2}$ is:
a)
$\left.\begin{array}{l}\theta=\frac{\pi}{3}+2 \pi k \\ \theta=\frac{5 \pi}{3}+2 \pi k\end{array}\right\}$ where $k \in \mathrm{I}$
b) $\left.\begin{array}{l}\theta=\frac{\pi}{3}+\pi k \\ \theta=\frac{5 \pi}{3}+\pi k\end{array}\right\}$ where $k \in \mathrm{I}$
c) $\left.\begin{array}{l}\theta=\frac{2 \pi}{3}+2 \pi k \\ \theta=\frac{4 \pi}{3}+2 \pi k\end{array}\right\}$ where $k \in \mathrm{I}$
d) $\left.\begin{array}{l}\theta=\frac{2 \pi}{3}+\pi k \\ \theta=\frac{4 \pi}{3}+\pi k\end{array}\right\}$ where $k \in \mathrm{I}$

If the equation $y=\sin (b(x+\pi))$ is represented by the following graph, what is the value of b ?

a) $\frac{2}{5}$
b) $\frac{5}{2}$
c) $\frac{2 \pi}{5}$
d) 5π

Which of the following is closest to the value of $\log _{2} 40+\log _{5} 125$?
a) 3
b) 8
c) 10
d) 45

Question 28

1 mark
A sheet of paper 12 cm long and 8 cm wide is used to make a box with no lid. Equal squares of side length $x \mathrm{~cm}$ are cut from each of the corners and the sides are folded up to make the box.

Which of the following expresses the volume of the box?
a) $\mathrm{V}(x)=x(12+x)(8+x)$
b) $\mathrm{V}(x)=x(12-x)(8-x)$
c) $\mathrm{V}(x)=x(12+2 x)(8+2 x)$
d) $\mathrm{V}(x)=x(12-2 x)(8-2 x)$

Given that the graph of $f(x)$ contains the point $(-3,5)$, what point must be on the graph of $f(-x)$?
a) $(-3,-5)$
b) $(3,5)$
c) $(3,-5)$
d) $(5,-3)$

Determine one positive and one negative coterminal angle with the angle $\frac{5 \pi}{6}$.

Question 31

Evaluate:

$$
\left(\sin \frac{11 \pi}{3}\right)\left(\sec \frac{11 \pi}{6}\right)
$$

Given the equation $2 \sin ^{2} \theta-3 \sin \theta+1=0$, verify that $\theta=\frac{\pi}{2}$ is a solution.
Question $33 \quad 2$ marks

Using the laws of logarithms, expand:

$$
\log _{a}\left(\frac{x \mathrm{~g} y}{z}\right)
$$

a) Sketch the graph of $f(x)=3^{x}+1$.

b) Sketch the graph of $f^{-1}(x)$.

Determine the x-intercept and y-intercept of $y=\log _{2}(x+4)-1$.

Question 36

Explain the error that was made when solving the following equation:
$\sin 2 \theta=\cos \theta$, where $\theta \in{ }^{\circ}$
$\sin 2 \theta=\cos \theta$
$2 \sin \theta \cos \theta=\cos \theta$
$\frac{2 \sin \theta \cos \theta}{\cos \theta}=\frac{\cos \theta}{\cos \theta}$ $2 \sin \theta=1$
$\sin \theta=\frac{1}{2}$
$\theta=\frac{\pi}{6}+2 k \pi, \frac{5 \pi}{6}+2 k \pi, \quad k \in I$

Given $f(x)=x^{2}-2 x-3$ and $g(x)=x+1$:
a) Write the equation of $y=f(g(x))$.
b) Sketch the graph of $y=f(g(x))$.

Is the point $\left(\frac{3}{4},-\frac{\sqrt{3}}{4}\right)$ on the unit circle?
Justify your answer.
Question $39 \quad 1$ mark

Explain why the equation $\sec \theta=\frac{1}{4}$ has no solution.

The graph of $y=\sin 2 x$ is sketched below.
Explain how to use this graph to solve the equation $\sin 2 x=\frac{1}{2}$ over the interval $[0,2 \pi]$.

Sketch the graph of $y=-4 \cos (2 x)$ over the interval $[-\pi, \pi]$.

Write the equation for $f(x)$ that satisfies all of the following conditions:

- $f(x)$ is a polynomial function of degree 4
- $f(x)$ has a zero at 2 with a multiplicity of 3
- $f(x)$ has a zero at -5
- $f(x)$ has a y-intercept of 80

Find the exact value of $\sin \left(\frac{19 \pi}{12}\right)$.

Solve the following equation:

$$
2 \log _{2}(x-1)-\log _{2}(x-5)=\log _{2}(x+1)
$$

Sketch the graph of $f(x)=(x-1)^{2}(x+2)^{3}$.
Label the x-intercepts and the y-intercept.

Sketch the graph of $y=-\sqrt{3(x+1)}$.

Solve:

$$
{ }_{n-1} P_{2}=42
$$

Sketch the graph of $y=\frac{2 x}{x+2}$.

Given the graphs of $f(x)$ and $g(x)$, sketch the graph of $(f g g)(x)$.

No marks will be awarded for work done on this page.

No marks will be awarded for work done on this page.

